73 research outputs found

    Structurally rich dry grasslands – Potential stepping stones for bats in open farmland

    Get PDF
    Agricultural intensification has caused decrease and fragmentation of European semi-natural dry grasslands. While a high biodiversity value of dry grasslands is acknowledged for plants and insects, locally and on landscape level, their relevance for mobile species, such as bats, is unknown. Here we investigate the use of dry grassland fragments by bats in an agriculturally intensified region in Germany and evaluate local and landscape factors influencing bat activity and assemblages. Specifically, we predicted that a combination of local dry grassland structural richness and landscape features as well as their interactions affect bat activity and foraging above dry grasslands. We also expected that these features influence compositions of local bat assemblages. We repeatedly sampled at 12 dry grassland plots with acoustic monitoring and assessed activity and foraging of bat species/sonotypes, which we grouped into guilds known for foraging in open land, at vegetation edges and in narrow spaces. We determined structural richness of the dry grassland plots in field and derived landscape features from digital landscape data. A relatively high proportion of bat species/sonotypes used dry grasslands regularly. The edge space foragers responded positively to higher local structural richness. Their dry grassland use increased when surrounding forests and woody features were less available, but they foraged more on dry grasslands closer to water bodies. Narrow space bat activity on dry grasslands decreased with less landscape connectivity. Open and narrow space foragers responded to local structural richness only in landscape context. For all bat guilds we found increased use of structurally richer dry grasslands when there was more open farmland in the surroundings. This was also the case for edge space foragers, when landscapes were more homogeneous. Lastly, with increasing structural richness, bat assemblages were more dominated by edge space foragers. We show the importance of European dry grassland fragments for the highly mobile group of bats under certain local structural and landscape compositional conditions. Our results underline the value of heterogeneous dry grassland fragments as potential stepping stones in intensively used farmland areas and contribute to evidence based decision making in dry grassland management and bat conservation

    Standardized high-throughput evaluation of cell-based compound screens

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>High-throughput screening of pharmaceutical compound activity in tissue culture experiments requires time-consuming repeated analysis of the large amounts of data generated. Automation of the evaluation procedure and assessment of measurement accuracy can save time and improve the comparability of results.</p> <p>Results</p> <p>We present a tool for simultaneous evaluation of an arbitrary number of compound screens including a standardized statistical validation. It is provided as a novel R package with a Tcl/Tk-based GUI for convenient use in the lab and runs on usual platforms like Linux, Windows and Mac OS. In a compound screen of lung cancer cells, the tool was successfully and efficiently applied for data analysis.</p> <p>Conclusion</p> <p>The package provides an efficient and intuitive platform for automatic evaluation of compound screens, improving the performance and standardization of data analysis.</p

    Salmonella Typhimurium impairs glycolysismediated acidification of phagosomes to evade macrophage defense

    Get PDF
    Regulation of cellular metabolism is now recognized as a crucial mechanism for the activation of innate and adaptive immune cells upon diverse extracellular stimuli. Macrophages, for instance, increase glycolysis upon stimulation with pathogen-associated molecular patterns (PAMPs). Conceivably, pathogens also counteract these metabolic changes for their own survival in the host. Despite this dynamic interplay in host-pathogen interactions, the role of immunometabolism in the context of intracellular bacterial infections is still unclear. Here, employing unbiased metabolomic and transcriptomic approaches, we investigated the role of metabolic adaptations of macrophages upon Salmonella enterica serovar Typhimurium (S. Typhimurium) infections. Importantly, our results suggest that S. Typhimurium abrogates glycolysis and its modulators such as insulin-signaling to impair macrophage defense. Mechanistically, glycolysis facilitates glycolytic enzyme aldolase A mediated v- ATPase assembly and the acidification of phagosomes which is critical for lysosomal degradation. Thus, impairment in the glycolytic machinery eventually leads to decreased bacterial clearance and antigen presentation in murine macrophages (BMDM). Collectively, our results highlight a vital molecular link between metabolic adaptation and phagosome maturation in macrophages, which is targeted by S. Typhimurium to evade cell-autonomous defense. Copyright

    Mutations in NNT encoding nicotinamide nucleotide transhydrogenase cause familial glucocorticoid deficiency

    Get PDF
    This work has been supported by the Medical Research Council UK (New Investigator Research Grant G0801265 to L.A.M., Clinical Research Training Fellowship Grant G0901980 to C.R.H. and Project Grant G0700767 to P.J.K.)

    Structurally rich dry grasslands – Potential stepping stones for bats in open farmland

    Get PDF
    Agricultural intensification has caused decrease and fragmentation of European semi-natural dry grasslands. While a high biodiversity value of dry grasslands is acknowledged for plants and insects, locally and on landscape level, their relevance for mobile species, such as bats, is unknown. Here we investigate the use of dry grassland fragments by bats in an agriculturally intensified region in Germany and evaluate local and landscape factors influencing bat activity and assemblages. Specifically, we predicted that a combination of local dry grassland structural richness and landscape features as well as their interactions affect bat activity and foraging above dry grasslands. We also expected that these features influence compositions of local bat assemblages. We repeatedly sampled at 12 dry grassland plots with acoustic monitoring and assessed activity and foraging of bat species/sonotypes, which we grouped into guilds known for foraging in open land, at vegetation edges and in narrow spaces. We determined structural richness of the dry grassland plots in field and derived landscape features from digital landscape data. A relatively high proportion of bat species/sonotypes used dry grasslands regularly. The edge space foragers responded positively to higher local structural richness. Their dry grassland use increased when surrounding forests and woody features were less available, but they foraged more on dry grasslands closer to water bodies. Narrow space bat activity on dry grasslands decreased with less landscape connectivity. Open and narrow space foragers responded to local structural richness only in landscape context. For all bat guilds we found increased use of structurally richer dry grasslands when there was more open farmland in the surroundings. This was also the case for edge space foragers, when landscapes were more homogeneous. Lastly, with increasing structural richness, bat assemblages were more dominated by edge space foragers. We show the importance of European dry grassland fragments for the highly mobile group of bats under certain local structural and landscape compositional conditions. Our results underline the value of heterogeneous dry grassland fragments as potential stepping stones in intensively used farmland areas and contribute to evidence based decision making in dry grassland management and bat conservation

    Actionable perturbations of damage responses by TCL1/ATM and epigenetic lesions form the basis of T-PLL

    Get PDF
    T-cell prolymphocytic leukemia (T-PLL) is a rare and poor-prognostic mature T-cell malignancy. Here we integrated large-scale profiling data of alterations in gene expression, allelic copy number (CN), and nucleotide sequences in 111 well-characterized patients. Besides prominent signatures of T-cell activation and prevalent clonal variants, we also identify novel hot-spots for CN variability, fusion molecules, alternative transcripts, and progression-associated dynamics. The overall lesional spectrum of T-PLL is mainly annotated to axes of DNA damage responses, T-cell receptor/cytokine signaling, and histone modulation. We formulate a multi-dimensional model of T-PLL pathogenesis centered around a unique combination of TCL1 overexpression with damaging ATM aberrations as initiating core lesions. The effects imposed by TCL1 cooperate with compromised ATM toward a leukemogenic phenotype of impaired DNA damage processing. Dysfunctional ATM appears inefficient in alleviating elevated redox burdens and telomere attrition and in evoking a p53-dependent apoptotic response to genotoxic insults. As non-genotoxic strategies, synergistic combinations of p53 reactivators and deacetylase inhibitors reinstate such cell death execution.Peer reviewe

    Towards a multisensor station for automated biodiversity monitoring

    Get PDF
    Rapid changes of the biosphere observed in recent years are caused by both small and large scale drivers, like shifts in temperature, transformations in land-use, or changes in the energy budget of systems. While the latter processes are easily quantifiable, documentation of the loss of biodiversity and community structure is more difficult. Changes in organismal abundance and diversity are barely documented. Censuses of species are usually fragmentary and inferred by often spatially, temporally and ecologically unsatisfactory simple species lists for individual study sites. Thus, detrimental global processes and their drivers often remain unrevealed. A major impediment to monitoring species diversity is the lack of human taxonomic expertise that is implicitly required for large-scale and fine-grained assessments. Another is the large amount of personnel and associated costs needed to cover large scales, or the inaccessibility of remote but nonetheless affected areas. To overcome these limitations we propose a network of Automated Multisensor stations for Monitoring of species Diversity (AMMODs) to pave the way for a new generation of biodiversity assessment centers. This network combines cutting-edge technologies with biodiversity informatics and expert systems that conserve expert knowledge. Each AMMOD station combines autonomous samplers for insects, pollen and spores, audio recorders for vocalizing animals, sensors for volatile organic compounds emitted by plants (pVOCs) and camera traps for mammals and small invertebrates. AMMODs are largely self-containing and have the ability to pre-process data (e.g. for noise filtering) prior to transmission to receiver stations for storage, integration and analyses. Installation on sites that are difficult to access require a sophisticated and challenging system design with optimum balance between power requirements, bandwidth for data transmission, required service, and operation under all environmental conditions for years. An important prerequisite for automated species identification are databases of DNA barcodes, animal sounds, for pVOCs, and images used as training data for automated species identification. AMMOD stations thus become a key component to advance the field of biodiversity monitoring for research and policy by delivering biodiversity data at an unprecedented spatial and temporal resolution. (C) 2022 Published by Elsevier GmbH on behalf of Gesellschaft fur Okologie

    Identification of vocal individuality in male cuckoos using different analytical techniques

    Get PDF
    © 2017 The Author(s). Background: Individuality in vocalizations may provide an effective tool for surveying populations of the Common Cuckoo (Cuculus canorus) but there remains few data on which technique to use to identify individuality. In this research, we compared the within- and between-individual variation in cuckoo calls using two different analytical methods, and discuss the feasibility of using call individuality to count male cuckoos within a population. Methods: We recorded vocalization from 13 males, and measured 15 spectro-temporal variables for each call. The majority of these call variables (n=12) have greater variation between individuals than within individual. We first calculated the similarity (Pearson's R) for each paired calls in order to find a threshold that could distinguish calls emitted from the same or different males, and then counted the number of males based on this distinction. Second, we used the more widely accepted technique of discriminant function analysis (DFA) to identify individual male cuckoos, and compared the correct rate of classifying individuals between the two analytical methods. Results: Similarity of paired calls from the same male was significantly higher than from different males. Under a relatively broad threshold interval, we achieved a high ( > 90%) correct rate to distinguish calls and an accurate estimate of male numbers. Based on banded males (n=3), we found the similarity of paired calls from different days was lower when compared with paired calls from the same day, but this change did not obscure individual identification, as similarity values of paired calls from different days were still larger than the threshold used to distinguish calls from the same or different males. DFA also yielded a high rate (91.9%) of correct classification of individuals. Conclusions: Our study suggests that identifying individual vocalizations can form the basis of an appropriate survey method for counting male cuckoos within a population, provided the performance of different analytical techniques are compared
    • …
    corecore